Constant Velocity with Toy Cars

Introduction: In this lab you will collect data for constant velocity of a toy car.

Part I: You will set distance markers on the ground at .5m increments and record times as the car rolls over each marker (note: It is important that the car is already traveling at a constant velocity *before* it reaches the zero marker) With this data you can construct a distance/time graph and calculate the slope.

Part II: Using your data you will calculate the velocity during each interval and plot this on a velocity/time graph and find the slope.

Pre-Lab Questions: If all of the carts are taken do the pre-lab questions while you are waiting.

- 1. What is the significance of the slope of a distance vs. time graph?
- 2. What is the significance of the slope of a velocity vs. time graph?
- 3. You have been commissioned by the New York State Troopers to develop a method for determining the speed of cars on a section of the Thruway to test if their radar equipment is accurate. Due to budget cuts you have been supplied with only a meterstick, stopwatch, and a can of spray paint. Describe in detail your method, any conversions needed, and the calculations you will need to do.

#6-8 Below are three graphs of a person walking in a straight line. Next to each graph describe the motion of the person. Be sure to indicate the rate of speed (slow, medium, fast) and the direction (right or left)

6.

Distance	Time	Δ	Δ Time	ΔDistance
(m)	(s)	Distance	(s)	△ Time
		(m)		(m/s)
d ₁	t ₁	XXXX	XXXX	XXXX
d ₂	t ₂	d ₂ -d ₁	t ₂ -t ₁	
d ₃	t ₃	d ₃ -d ₂	t ₃ -t ₂	
d ₄	t ₄	d ₄ -d ₃	t ₄ -t ₃	
d ₅	t ₅	d ₅ -d ₄	t ₅ -t ₄	
d ₆	t ₆	d ₆ -d ₅	t ₆ -t ₅	
d ₇	t ₇	d ₇ -d ₆	t ₇ -t ₆	

Graphs: Now that you have calculated your averages its time to plot the data. On the front of a piece of graph paper plot distance vs. time and on the back side plot velocity vs. time. IMPORTANT NOTE: Your range for velocity should begin at Zero and use most of the height of the graph! Next to the graph calculate the slope (SHOW ALL WORK: Slope formula, substitution with units, and a slope with a unit!)

Conclusion Question: Describe a minimum of three sources of error and ways in which you might be able to reduce the error if you were able to repeat the lab with a \$1,000 budget.