Constant Velocity with Toy Cars Introduction: In this lab you will collect data for constant velocity of a toy car. **Part I:** You will set distance markers on the ground at .5m increments and record times as the car rolls over each marker (note: It is important that the car is already traveling at a constant velocity *before* it reaches the zero marker) With this data you can construct a distance/time graph and calculate the slope. **Part II:** Using your data you will calculate the velocity during each interval and plot this on a velocity/time graph and find the slope. Pre-Lab Questions: If all of the carts are taken do the pre-lab questions while you are waiting. - 1. What is the significance of the slope of a distance vs. time graph? - 2. What is the significance of the slope of a velocity vs. time graph? - 3. You have been commissioned by the New York State Troopers to develop a method for determining the speed of cars on a section of the Thruway to test if their radar equipment is accurate. Due to budget cuts you have been supplied with only a meterstick, stopwatch, and a can of spray paint. Describe in detail your method, any conversions needed, and the calculations you will need to do. #6-8 Below are three graphs of a person walking in a straight line. Next to each graph describe the motion of the person. Be sure to indicate the rate of speed (slow, medium, fast) and the direction (right or left) 6. | Distance | Time | Δ | Δ Time | ΔDistance | |-----------------------|----------------|--------------------------------|--------------------------------|-----------| | (m) | (s) | Distance | (s) | △ Time | | | | (m) | | (m/s) | | d ₁ | t ₁ | XXXX | XXXX | XXXX | | d ₂ | t ₂ | d ₂ -d ₁ | t ₂ -t ₁ | | | d ₃ | t ₃ | d ₃ -d ₂ | t ₃ -t ₂ | | | d ₄ | t ₄ | d ₄ -d ₃ | t ₄ -t ₃ | | | d ₅ | t ₅ | d ₅ -d ₄ | t ₅ -t ₄ | | | d ₆ | t ₆ | d ₆ -d ₅ | t ₆ -t ₅ | | | d ₇ | t ₇ | d ₇ -d ₆ | t ₇ -t ₆ | | Graphs: Now that you have calculated your averages its time to plot the data. On the front of a piece of graph paper plot distance vs. time and on the back side plot velocity vs. time. IMPORTANT NOTE: Your range for velocity should begin at Zero and use most of the height of the graph! Next to the graph calculate the slope (SHOW ALL WORK: Slope formula, substitution with units, and a slope with a unit!) Conclusion Question: Describe a minimum of three sources of error and ways in which you might be able to reduce the error if you were able to repeat the lab with a \$1,000 budget.